Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 115
1.
Nat Genet ; 56(3): 383-394, 2024 Mar.
Article En | MEDLINE | ID: mdl-38291334

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships among CAG expansions, death of specific cell types and molecular events associated with these processes are not established. Here, we used fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise at mHTT in striatal medium spiny neurons (MSNs), cholinergic interneurons and cerebellar Purkinje neurons, and at mutant ATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1. Our data support a model in which CAG expansions are necessary but may not be sufficient for cell death and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.


Corpus Striatum , Huntington Disease , Humans , Animals , Cerebellum/metabolism , Huntington Disease/genetics , Disease Models, Animal
2.
Neuron ; 112(6): 924-941.e10, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38237588

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.


Huntington Disease , Animals , Huntington Disease/metabolism , Neurons/metabolism , Pyramidal Cells/metabolism , Cerebral Cortex/metabolism , Solitary Nucleus/metabolism , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
3.
Genes Dev ; 37(19-20): 883-900, 2023 10 01.
Article En | MEDLINE | ID: mdl-37890975

Loss-of-function mutations in MECP2 cause Rett syndrome (RTT), a severe neurological disorder that mainly affects girls. Mutations in MECP2 do occur in males occasionally and typically cause severe encephalopathy and premature lethality. Recently, we identified a missense mutation (c.353G>A, p.Gly118Glu [G118E]), which has never been seen before in MECP2, in a young boy who suffered from progressive motor dysfunction and developmental delay. To determine whether this variant caused the clinical symptoms and study its functional consequences, we established two disease models, including human neurons from patient-derived iPSCs and a knock-in mouse line. G118E mutation partially reduces MeCP2 abundance and its DNA binding, and G118E mice manifest RTT-like symptoms seen in the patient, affirming the pathogenicity of this mutation. Using live-cell and single-molecule imaging, we found that G118E mutation alters MeCP2's chromatin interaction properties in live neurons independently of its effect on protein levels. Here we report the generation and characterization of RTT models of a male hypomorphic variant and reveal new insight into the mechanism by which this pathological mutation affects MeCP2's chromatin dynamics. Our ability to quantify protein dynamics in disease models lays the foundation for harnessing high-resolution single-molecule imaging as the next frontier for developing innovative therapies for RTT and other diseases.


Chromatin , Rett Syndrome , Female , Humans , Male , Mice , Animals , Chromatin/metabolism , Brain/metabolism , Methyl-CpG-Binding Protein 2/genetics , Rett Syndrome/genetics , Mutation , Neurons/metabolism
4.
bioRxiv ; 2023 Jun 08.
Article En | MEDLINE | ID: mdl-37333326

Brain region-specific degeneration and somatic expansions of the mutant Huntingtin (mHTT) CAG tract are key features of Huntington's disease (HD). However, the relationships between CAG expansions, death of specific cell types, and molecular events associated with these processes are not established. Here we employed fluorescence-activated nuclear sorting (FANS) and deep molecular profiling to gain insight into the properties of cell types of the human striatum and cerebellum in HD and control donors. CAG expansions arise in striatal medium spiny neurons (MSNs) and cholinergic interneurons, in cerebellar Purkinje neurons, and at mATXN3 in MSNs from SCA3 donors. CAG expansions in MSNs are associated with higher levels of MSH2 and MSH3 (forming MutSß), which can inhibit nucleolytic excision of CAG slip-outs by FAN1 in a concentration-dependent manner. Our data indicate that ongoing CAG expansions are not sufficient for cell death, and identify transcriptional changes associated with somatic CAG expansions and striatal toxicity.

5.
bioRxiv ; 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37162977

The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here we employed serial fluorescence activated nuclear sorting (sFANS), deep molecular profiling, and single nucleus RNA sequencing (snRNAseq) to demonstrate that layer 5a pyramidal neurons are vulnerable in primary motor cortex and other cortical areas of HD donors. Extensive mHTT -CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layer 6a, layer 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify the vulnerable layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT -CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in the HD cerebral cortex.

7.
Proc Natl Acad Sci U S A ; 119(49): e2211454119, 2022 12 06.
Article En | MEDLINE | ID: mdl-36442105

Neuromodulatory substances can be released from distal afferents for communication between brain structures or produced locally to modulate neighboring circuit elements. Corticotropin-releasing hormone (CRH) from long-range neurons in the hypothalamus projecting to the medial prefrontal cortex (mPFC) has been shown to induce anxiety-like behaviors. However, the role of CRH produced in the mPFC has not been investigated. Here we demonstrate that a specific class of mPFC interneurons that express CRH (CrhINs) releases CRH upon high-frequency stimulation to enhance excitability of layer 2/3 pyramidal cells (L2/3 PCs) expressing the CRH receptors. When stimulated at low frequency, CrhINs release GABA resulting in the inhibition of oxytocin receptor-expressing interneurons (OxtrINs) and L2/3 PCs. Conditional deletion of CRH in mPFC CrhINs and chemogenetic activation of CrhINs have opposite effects on novelty exploration in male but not in female mice, and do not affect anxiety-related behaviors in either males or females. Our data reveal that CRH produced by local interneurons in the mPFC is required for sex-specific novelty exploration and suggest that our understanding of complex behaviors may require knowledge of local and remote neuromodulatory action.


Corticotropin-Releasing Hormone , Prefrontal Cortex , Female , Male , Animals , Mice , Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone , Pyramidal Cells , Interneurons
8.
Nat Metab ; 4(11): 1495-1513, 2022 11.
Article En | MEDLINE | ID: mdl-36411386

Food intake and body weight are tightly regulated by neurons within specific brain regions, including the brainstem, where acute activation of dorsal raphe nucleus (DRN) glutamatergic neurons expressing the glutamate transporter Vglut3 (DRNVglut3) drive a robust suppression of food intake and enhance locomotion. Activating Vglut3 neurons in DRN suppresses food intake and increases locomotion, suggesting that modulating the activity of these neurons might alter body weight. Here, we show that DRNVglut3 neurons project to the lateral hypothalamus (LHA), a canonical feeding center that also reduces food intake. Moreover, chronic DRNVglut3 activation reduces weight in both leptin-deficient (ob/ob) and leptin-resistant diet-induced obese (DIO) male mice. Molecular profiling revealed that the orexin 1 receptor (Hcrtr1) is highly enriched in DRN Vglut3 neurons, with limited expression elsewhere in the brain. Finally, an orally bioavailable, highly selective Hcrtr1 antagonist (CVN45502) significantly reduces feeding and body weight in DIO. Hcrtr1 is also co-expressed with Vglut3 in the human DRN, suggesting that there might be a similar effect in human. These results identify a potential therapy for obesity by targeting DRNVglut3 neurons while also establishing a general strategy for developing drugs for central nervous system disorders.


Brain Stem , Leptin , Neurons , Weight Loss , Animals , Humans , Male , Mice , Brain Stem/metabolism , Leptin/metabolism , Mice, Obese , Neurons/metabolism , Obesity/drug therapy , Obesity/metabolism , Orexin Receptors/metabolism
9.
Proc Natl Acad Sci U S A ; 119(21): e2122544119, 2022 05 24.
Article En | MEDLINE | ID: mdl-35588456

Environmental perturbations during the first years of life are a major factor in psychiatric diseases. Phencyclidine (PCP), a drug of abuse, has psychomimetic effects, and neonatal subchronic administration of PCP in rodents leads to long-term behavioral changes relevant for schizophrenia. The cerebellum is increasingly recognized for its role in diverse cognitive functions. However, little is known about potential cerebellar changes in models of schizophrenia. Here, we analyzed the characteristics of the cerebellum in the neonatal subchronic PCP model. We found that, while the global cerebellar cytoarchitecture and Purkinje cell spontaneous spiking properties are unchanged, climbing fiber/Purkinje cell synaptic connectivity is increased in juvenile mice. Neonatal subchronic administration of PCP is accompanied by increased cFos expression, a marker of neuronal activity, and transient modification of the neuronal surfaceome in the cerebellum. The largest change observed is the overexpression of Ctgf, a gene previously suggested as a biomarker for schizophrenia. This neonatal increase in Ctgf can be reproduced by increasing neuronal activity in the cerebellum during the second postnatal week using chemogenetics. However, it does not lead to increased climbing fiber/Purkinje cell connectivity in juvenile mice, showing the complexity of PCP action. Overall, our study shows that administration of the drug of abuse PCP during the developmental period of intense cerebellar synaptogenesis and circuit remodeling has long-term and specific effects on Purkinje cell connectivity and warrants the search for this type of synaptic changes in psychiatric diseases.


Hallucinogens , Phencyclidine , Purkinje Cells , Schizophrenia , Animals , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Disease Models, Animal , Hallucinogens/administration & dosage , Hallucinogens/adverse effects , Mice , Neurons/drug effects , Neurons/metabolism , Phencyclidine/administration & dosage , Phencyclidine/adverse effects , Proto-Oncogene Proteins c-fos/metabolism , Purkinje Cells/drug effects , Purkinje Cells/physiology , Purkinje Cells/ultrastructure , Receptors, Phencyclidine/agonists , Schizophrenia/chemically induced , Schizophrenia/pathology , Synapses/drug effects , Synapses/ultrastructure
10.
Cell Rep ; 38(12): 110556, 2022 03 22.
Article En | MEDLINE | ID: mdl-35320722

Many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), lead to the selective degeneration of discrete cell types in the CNS despite the ubiquitous expression of many genes linked to disease. Therapeutic advancement depends on understanding the unique cellular adaptations that underlie pathology of vulnerable cells in the context of disease-causing mutations. Here, we employ bacTRAP molecular profiling to elucidate cell type-specific molecular responses of cortical upper motor neurons in a preclinical ALS model. Using two bacTRAP mouse lines that label distinct vulnerable or resilient projection neuron populations in motor cortex, we show that the regulation of oxidative phosphorylation (Oxphos) pathways is a common response in both cell types. However, differences in the baseline expression of genes involved in Stem and the handling of reactive oxygen species likely lead to the selective degeneration of the vulnerable cells. These results provide a framework to identify cell-type-specific processes in neurodegenerative disease.


Amyotrophic Lateral Sclerosis , Motor Cortex , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Motor Cortex/metabolism , Motor Neurons/metabolism , Neurodegenerative Diseases/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
11.
Mol Psychiatry ; 27(4): 2068-2079, 2022 04.
Article En | MEDLINE | ID: mdl-35177825

Forebrain dopamine-sensitive (dopaminoceptive) neurons play a key role in movement, action selection, motivation, and working memory. Their activity is altered in Parkinson's disease, addiction, schizophrenia, and other conditions, and drugs that stimulate or antagonize dopamine receptors have major therapeutic applications. Yet, similarities and differences between the various neuronal populations sensitive to dopamine have not been systematically explored. To characterize them, we compared translating mRNAs in the dorsal striatum and nucleus accumbens neurons expressing D1 or D2 dopamine receptor and prefrontal cortex neurons expressing D1 receptor. We identified genome-wide cortico-striatal, striatal D1/D2 and dorso/ventral differences in the translating mRNA and isoform landscapes, which characterize dopaminoceptive neuronal populations. Expression patterns and network analyses identified novel transcription factors with presumptive roles in these differences. Prostaglandin E2 (PGE2) was a candidate upstream regulator in the dorsal striatum. We pharmacologically explored this hypothesis and showed that misoprostol, a PGE2 receptor agonist, decreased the excitability of D2 striatal projection neurons in slices, and diminished their activity in vivo during novel environment exploration. We found that misoprostol also modulates mouse behavior including by facilitating reversal learning. Our study provides powerful resources for characterizing dopamine target neurons, new information about striatal gene expression patterns and regulation. It also reveals the unforeseen role of PGE2 in the striatum as a potential neuromodulator and an attractive therapeutic target.


Dinoprostone , Misoprostol , Animals , Corpus Striatum/metabolism , Dinoprostone/metabolism , Dinoprostone/pharmacology , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Exons , Gene Expression , Mice , Misoprostol/metabolism , Misoprostol/pharmacology , RNA, Messenger/metabolism , Receptors, Dopamine D1/metabolism
12.
Elife ; 102021 12 17.
Article En | MEDLINE | ID: mdl-34919053

Although high levels of 5-hydroxymethylcytosine (5hmC) accumulate in mammalian neurons, our knowledge of its roles in terminal differentiation or as an intermediate in active DNA demethylation is incomplete. We report high-resolution mapping of DNA methylation and hydroxymethylation, chromatin accessibility, and histone marks in developing postmitotic Purkinje cells (PCs) in Mus musculus. Our data reveal new relationships between PC transcriptional and epigenetic programs, and identify a class of genes that lose both 5-methylcytosine (5mC) and 5hmC during terminal differentiation. Deletion of the 5hmC writers Tet1, Tet2, and Tet3 from postmitotic PCs prevents loss of 5mC and 5hmC in regulatory domains and gene bodies, and hinders transcriptional and epigenetic developmental transitions. Our data demonstrate that Tet-mediated active DNA demethylation occurs in vivo, and that acquisition of the precise molecular properties of adult PCs require continued oxidation of 5mC to 5hmC during the final phases of differentiation.


At birth, the mammalian brain contains tens of billions of neurons. Although the number does not increase much as the animal grows, there are many dramatic changes to their size and structure. These changes allow the neurons to communicate with one another, develop into networks, and learn the tasks of the adult brain. One way that these changes occur is by the accumulation of chemical marks on each neuron's DNA that help dictate which genes switch on, and which turn off. One of the most common ways that DNA can be marked is through the addition of a chemical group called a methyl group to one of the four DNA bases, cytosine. This process is called methylation. When methylation occurs, cytosine becomes 5-methylcytosine, or 5mC for short. In 2009, researchers found another modification present in the DNA in the brain: 5-hydroxymethylcytosine, or 5hmC. This modification appears when a group of proteins called the Tet hydroxylases turn 5mC into 5hmC. Converting 5mC to 5hmC normally helps cells remove marks on their DNA before they divide and expand. This is important because the newly generated cells need to be able to accumulate their own methylation marks to perform their roles properly. However, neurons in the brain accumulate 5hmC after birth, when the cells are no longer dividing, indicating that 5hmC may be required for the neurons to mature. Stoyanova et al. set out to determine whether mouse neurons need 5hmC to get their adult characteristics by tracking the chemical changes that occur in DNA from birth to adulthood. Some of the mice they tested produced 5hmC normally, while others lacked the genes necessary to make the Tet proteins in a specific class of neurons, preventing them from converting 5mC to 5hmC as they differentiate. The results reveal that neurons do not mature properly if 5hmC is not produced continuously following the first week of life. This is because neurons need to have the right genes switched on and off to differentiate correctly, and this only happens when 5hmC accumulates in some genes, while 5hmC and 5mC are removed from others. The data highlight the role of the Tet proteins, which convert 5mC into 5hmC, in preparing the marks for removal and demonstrate that active removal of these marks is essential for neuronal differentiation. Given the role of 5hmC in the development of neurons, it is possible that problems in this system could contribute to brain disorders. Further studies aimed at understanding how cells control 5hmC levels could lead to new ways to improve brain health. Research has also shown that if dividing cells lose the ability to make 5hmC, they can become cancerous. Future work could explain more about how and why this happens.


5-Methylcytosine/analogs & derivatives , Cell Differentiation , Neurons/physiology , 5-Methylcytosine/metabolism , Animals , Demethylation , Mice
13.
Mol Psychiatry ; 26(11): 7029-7046, 2021 11.
Article En | MEDLINE | ID: mdl-34099874

The subthalamic nucleus (STN) is a component of the basal ganglia and plays a key role to control movement and limbic-associative functions. STN modulation with deep brain stimulation (DBS) improves the symptoms of Parkinson's disease (PD) and obsessive-compulsive disorder (OCD) patients. However, DBS does not allow for cell-type-specific modulation of the STN. While extensive work has focused on elucidating STN functionality, the understanding of the role of specific cell types is limited. Here, we first performed an anatomical characterization of molecular markers for specific STN neurons. These studies revealed that most STN neurons express Pitx2, and that different overlapping subsets express Gabrr3, Ndnf, or Nos1. Next, we used optogenetics to define their roles in regulating locomotor and limbic functions in mice. Specifically, we showed that optogenetic photoactivation of STN neurons in Pitx2-Cre mice or of the Gabrr3-expressing subpopulation induces locomotor changes, and improves locomotion in a PD mouse model. In addition, photoactivation of Pitx2 and Gabrr3 cells induced repetitive grooming, a phenotype associated with OCD. Repeated stimulation prompted a persistent increase in grooming that could be reversed by fluoxetine treatment, a first-line drug therapy for OCD. Conversely, repeated inhibition of STNGabrr3 neurons suppressed grooming in Sapap3 KO mice, a model for OCD. Finally, circuit and functional mapping of STNGabrr3 neurons showed that these effects are mediated via projections to the globus pallidus/entopeduncular nucleus and substantia nigra reticulata. Altogether, these data identify Gabrr3 neurons as a key population in mediating the beneficial effects of STN modulation thus providing potential cellular targets for PD and OCD drug discovery.


Obsessive-Compulsive Disorder , Parkinson Disease , Subthalamic Nucleus , Animals , Mice , Nerve Tissue Proteins , Neurons/physiology , Obsessive-Compulsive Disorder/therapy , Parkinson Disease/therapy
14.
Mol Psychiatry ; 26(6): 2334-2349, 2021 06.
Article En | MEDLINE | ID: mdl-33441982

Serotonin receptor 4 (5-HT4R) plays an important role in regulating mood, anxiety, and cognition, and drugs that activate this receptor have fast-acting antidepressant (AD)-like effects in preclinical models. However, 5-HT4R is widely expressed throughout the central nervous system (CNS) and periphery, making it difficult to pinpoint the cell types and circuits underlying its effects. Therefore, we generated a Cre-dependent 5-HT4R knockout mouse line to dissect the function of 5-HT4R in specific brain regions and cell types. We show that the loss of functional 5-HT4R specifically from excitatory neurons of hippocampus led to robust AD-like behavioral responses and an elevation in baseline anxiety. 5-HT4R was necessary to maintain the proper excitability of dentate gyrus (DG) granule cells and cell type-specific molecular profiling revealed a dysregulation of genes necessary for normal neural function and plasticity in cells lacking 5-HT4R. These adaptations were accompanied by an increase in the number of immature neurons in ventral, but not dorsal, dentate gyrus, indicating a broad impact of 5-HT4R loss on the local cellular environment. This study is the first to use conditional genetic targeting to demonstrate a direct role for hippocampal 5-HT4R signaling in modulating mood and anxiety. Our findings also underscore the need for cell type-based approaches to elucidate the complex action of neuromodulatory systems on distinct neural circuits.


Anxiety , Hippocampus , Animals , Dentate Gyrus/metabolism , Hippocampus/metabolism , Mice , Neurons/metabolism , Receptors, Serotonin , Receptors, Serotonin, 5-HT4/genetics , Receptors, Serotonin, 5-HT4/metabolism
15.
Cold Spring Harb Protoc ; 2020(10)2020 10 01.
Article En | MEDLINE | ID: mdl-33004551

This protocol describes methods for isolation of total DNA from a strain of Sacchromyces cerevisiae carrying a recombinant yeast artificial chromosome (YAC). This method is appropriate for preparing DNA that will be subjected to regular agarose gel electrophoresis, Southern blotting, subcloning, genomic library construction, polymerase chain reaction (PCR), or other methods that do not require intact high-molecular-weight DNA. Because the linear YAC DNAs are sensitive to shearing forces, pipettes with wide-bore tips should be used to transfer DNAs. Drop dialysis should be used to exchange buffers. The expected yield from a 10-mL culture is 2-4 µg of yeast DNA.


Blotting, Southern/methods , Chromosomes, Artificial, Yeast/genetics , DNA, Fungal/genetics , Electrophoresis, Agar Gel/methods , Polymerase Chain Reaction/methods , Saccharomyces cerevisiae/genetics , Cloning, Molecular/methods , DNA, Fungal/analysis , DNA, Fungal/isolation & purification , Electrophoresis, Gel, Pulsed-Field/methods , Genomic Library , Saccharomyces cerevisiae/growth & development , Sequence Analysis, DNA/methods
16.
Cold Spring Harb Protoc ; 2020(10)2020 10 01.
Article En | MEDLINE | ID: mdl-33004554

Genetic targeting of specific cell types is fundamentally important for modern molecular-genetic studies. The development of simple methods to engineer high-capacity vectors-in particular, bacterial artificial chromosomes (BACs)-for the preparation of transgenic lines that accurately express a gene of interest has resulted in commonplace usage of transgenic techniques in a wide variety of experimental systems. Here we provide a brief description of each of the four major types of large-capacity vectors, with a focus on the use of BAC vectors.


Bacteriophage P1/genetics , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Yeast/genetics , Genetic Vectors/genetics , Animals , Escherichia coli/genetics , Gene Transfer Techniques , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice, Transgenic , Models, Genetic , Recombination, Genetic/genetics , Transgenes/genetics
17.
Nature ; 587(7833): 258-263, 2020 11.
Article En | MEDLINE | ID: mdl-33116307

The anterolateral pathway consists of ascending spinal tracts that convey pain, temperature and touch information from the spinal cord to the brain1-4. Projection neurons of the anterolateral pathway are attractive therapeutic targets for pain treatment because nociceptive signals emanating from the periphery are channelled through these spinal projection neurons en route to the brain. However, the organizational logic of the anterolateral pathway remains poorly understood. Here we show that two populations of projection neurons that express the structurally related G-protein-coupled receptors (GPCRs) TACR1 and GPR83 form parallel ascending circuit modules that cooperate to convey thermal, tactile and noxious cutaneous signals from the spinal cord to the lateral parabrachial nucleus of the pons. Within this nucleus, axons of spinoparabrachial (SPB) neurons that express Tacr1 or Gpr83 innervate distinct sets of subnuclei, and strong optogenetic stimulation of the axon terminals induces distinct escape behaviours and autonomic responses. Moreover, SPB neurons that  express Gpr83 are highly sensitive to cutaneous mechanical stimuli and receive strong synaptic inputs from both high- and low-threshold primary mechanosensory neurons. Notably, the valence associated with activation of SPB neurons that express Gpr83 can be either positive or negative, depending on stimulus intensity. These findings reveal anatomically, physiologically and functionally distinct subdivisions of the SPB tract that underlie affective aspects of touch and pain.


Neural Pathways , Pain/physiopathology , Spinal Cord/cytology , Spinal Cord/physiology , Touch/physiology , Animals , Axons/metabolism , Female , Male , Mechanotransduction, Cellular , Mice , Philosophy , Receptors, G-Protein-Coupled/genetics , Sensory Receptor Cells/metabolism , Skin/innervation , Synapses/metabolism
18.
Nature ; 586(7829): 407-411, 2020 10.
Article En | MEDLINE | ID: mdl-33029009

To survive in a dynamic environment, animals need to identify and appropriately respond to stimuli that signal danger1. Survival also depends on suppressing the threat-response during a stimulus that predicts the absence of threat (safety)2-5. An understanding of the biological substrates of emotional memories during a task in which animals learn to flexibly execute defensive responses to a threat-predictive cue and a safety cue is critical for developing treatments for memory disorders such as post-traumatic stress disorder5. The centrolateral amygdala is an important node in the neuronal circuit that mediates defensive responses6-9, and a key brain area for processing and storing threat memories. Here we applied intersectional chemogenetic strategies to inhibitory neurons in the centrolateral amygdala of mice to block cell-type-specific translation programs that are sensitive to depletion of eukaryotic initiation factor 4E (eIF4E) and phosphorylation of eukaryotic initiation factor 2α (p-eIF2α). We show that de novo translation in somatostatin-expressing inhibitory neurons in the centrolateral amygdala is necessary for the long-term storage of conditioned-threat responses, whereas de novo translation in protein kinase Cδ-expressing inhibitory neurons in the centrolateral amygdala is necessary for the inhibition of a conditioned response to a safety cue. Our results provide insight into the role of de novo protein synthesis in distinct inhibitory neuron populations in the centrolateral amygdala during the consolidation of long-term memories.


Amygdala/cytology , Amygdala/physiology , Emotions , Memory/physiology , Neural Inhibition , Neurons/physiology , Animals , Conditioning, Psychological , Cues , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Fear/physiology , Female , Heterotrimeric GTP-Binding Proteins/metabolism , Male , Mice , Protein Biosynthesis , RNA Caps/genetics , RNA Caps/metabolism , Signal Transduction , Somatostatin/metabolism
19.
Cold Spring Harb Protoc ; 2020(10)2020 10 01.
Article En | MEDLINE | ID: mdl-32763978

In this protocol, yeast DNA is prepared by digestion of the cell wall and lysis of the resulting spheroplasts with SDS. This method reproducibly yields several micrograms of yeast DNA that can be efficiently cleaved by restriction enzymes and used as a template in polymerase chain reaction (PCR). Note that yeast colonies can also be used directly in PCR, without purifying yeast DNA.


Cell Wall/chemistry , DNA, Fungal/genetics , Polymerase Chain Reaction/methods , Saccharomyces cerevisiae/genetics , Sodium Dodecyl Sulfate/chemistry , Spheroplasts/chemistry , Cloning, Molecular/methods , Culture Media/chemistry , DNA Restriction Enzymes/metabolism , DNA, Fungal/isolation & purification , DNA, Fungal/metabolism , Genomic Library , Saccharomyces cerevisiae/growth & development
20.
Neuron ; 107(5): 821-835.e12, 2020 09 09.
Article En | MEDLINE | ID: mdl-32603655

A major obstacle to treating Alzheimer's disease (AD) is our lack of understanding of the molecular mechanisms underlying selective neuronal vulnerability, a key characteristic of the disease. Here, we present a framework integrating high-quality neuron-type-specific molecular profiles across the lifetime of the healthy mouse, which we generated using bacTRAP, with postmortem human functional genomics and quantitative genetics data. We demonstrate human-mouse conservation of cellular taxonomy at the molecular level for neurons vulnerable and resistant in AD, identify specific genes and pathways associated with AD neuropathology, and pinpoint a specific functional gene module underlying selective vulnerability, enriched in processes associated with axonal remodeling, and affected by amyloid accumulation and aging. We have made all cell-type-specific profiles and functional networks available at http://alz.princeton.edu. Overall, our study provides a molecular framework for understanding the complex interplay between Aß, aging, and neurodegeneration within the most vulnerable neurons in AD.


Alzheimer Disease/pathology , Gene Expression Profiling/methods , Machine Learning , Neurons/pathology , Transcriptome , Aging/genetics , Aging/pathology , Alzheimer Disease/genetics , Animals , Gene Regulatory Networks/physiology , Humans , Mice
...